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Abstract

Our knowledge about the world is populated with categories
like dog, chair, and cup. Yet much of what we understand
about how we acquire this knowledge comes from studies of
learning in circumstances that little resemble real-world expe-
rience. In the lab, category learning typically involves pursu-
ing an explicit goal to learn categories that prompts a search for
just one or a few features diagnostic of category membership.
In contrast, everyday experience is full of incidental encoun-
ters that allow us to observe how features cluster together in
categories, such observing the co-occurrence of four legs, tail,
and snout in dogs we happen to pass on the street. Here, we
investigated how incidental exposure shapes category learning
using a combined behavioral, eye tracking, and computational
modeling approach. We found that learners picked up on the
way features clustered together in categories just from inci-
dental exposure, with pronounced downstream consequences
for category learning.
Keywords: category learning; visual attention; implicit learn-
ing

Introduction
Categories guide how we navigate, interact with, and commu-
nicate about the world around us. For example, recognizing
something as a dog allows us to anticipate that it is likely to
walk on the ground rather than take flight, interpret its behav-
ior as friendly or threatening, choose whether to approach or
avoid it, and discuss it in conversation. Moreover, categories
provide anchors for building new knowledge, allowing us to
generalize new information we learn about one dog such as
is warm blooded to others. How do we learn these vital cate-
gories in the first place?

Understanding category learning has been a key focus for
efforts to understand the human mind, motivating centuries of
philosophy and decades of empirical research. Yet, much of
what we know about category learning is divorced from ev-
eryday reality. Our day-to-day experience is full of incidental
encounters with category members in which we have no goal
to categorize, such as when we happen to pass a dog on the
street. These encounters likely far outweigh access to explicit
category information, such as observing a person pointing at
a dog and saying, “This is a dog”. In contrast, researchers
in the lab typically study category learning that is highly ex-
plicit and goal-oriented. In a typical category learning study,
learners are simply presented with items and explicitly asked

to figure out how to classify them into categories. Learn-
ers might need to figure out the classification on their own
(e.g., Pothos & Chater, 2005), receive the benefit of correc-
tive feedback (e.g., Rehder & Hoffman, 2005), or alternate
between the two (e.g., Bröker, Love, & Dayan, 2022). This
approach is attractive because learning can be observed from
the categorization decisions that learners make. However, this
insight comes at a high cost because it cannot reveal how in-
cidental encounters so commonplace in everyday experience
contribute to category learning.

Figure 1: Example of feature clusters in cats and dogs. Fea-
ture values were generated for illustrative purposes.

Incidental encounters can potentially provide a rich source
for category learning because they give us the opportunity to
observe how features cluster together in categories, such as
the way that fur, four legs, a snout and tail cluster together
in dogs. Indeed, there is evidence from many domains for
sensitivity to the regularity with which some perceptual in-
puts predict others (Chun & Jiang, 1998; Saffran, Johnson,
Aslin, & Newport, 1999; Fiser & Aslin, 2001). In other
words, even an incidental learner might be sensitive to the fact
that any one dog feature tends to be accompanied by the oth-
ers. As highlighted by the seminal observations of Rosch and
her colleagues, such clusters of features are incorporated into
knowledge about many real-world categories (Rosch, 1975;
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Malt & Smith, 1984). In contrast, category learners in the lab
most readily seize upon simple criteria for making efficient
categorization decisions, such as using the appearance of a
single feature as the basis for determining category member-
ship (Shepard, Hovland, & Jenkins, 1961; Rehder & Hoff-
man, 2005; Ashby & Gott, 1988). The efficient learning that
takes place in the lab has shaped prominent accounts of cate-
gory learning, which emphasize processes such as searching
for simple rules to determine category membership, and se-
lectively orienting attention to features most predictive of cat-
egory membership (Nosofsky, 2011; Kruschke, 1992; Ashby,
Alfonso-Reese, Waldron, et al., 1998). Thus, the picture of
category learning we obtain from lab-based learners who pur-
sue an explicit goal to categorize may miss how category
learning is shaped by incidental exposure to the clusters of
features characteristic of real-world categories.

The goal of the present research was to bring our under-
standing of category learning closer to how it may unfold
from the incidental encounters ubiquitous in everyday expe-
rience. In what follows, we first discuss our currently limited
understanding of the role of incidental exposure in category
learning. We then present a combined behavioral, eye track-
ing and computational modeling study designed to shed new
light on how category learning is shaped by the opportunity
to pick up on clusters of features associated with category
membership from incidental exposure.

Incidental Exposure in Category Learning
The most abundant source of insight into learning categories
without an explicit goal to do so comes from studies with
infants, who by necessity cannot be given explicit goals
(Quinn, Eimas, & Rosenkrantz, 1993; Eimas & Quinn, 1994;
Mareschal, Powell, Westermann, & Volein, 2005; Younger
& Cohen, 1986). These studies raise the possibility that in-
fant learners pick up on clusters of features associated with
category membership. For example, one common approach
has been to show infants members of a real-world category
(e.g., cats) until their attention starts to drift. If attention is
recaptured by images from a second category (e.g., dogs), it
is taken as evidence that infants differentiate it from the first.
This research has revealed that infants differentiate categories
whose features form distinct clusters. For example, these
studies used images of category members such as dogs and
cats that varied along several dimensions, such as ear length
and nose width. Importantly, infants only differentiated the
categories when values along dimensions for the first cate-
gory formed a cluster that was distinct from values in the sec-
ond category. For example, initial exposure to cats with their
consistently short ears and narrow noses was followed by suc-
cessful differentiation from dogs. In contrast, initial exposure
to dogs with their highly variable ear lengths and nose widths
was followed by failure to differentiate them from cats. These
studies suggest that infant learners may pick up on the way
features cluster together in categories. However, they shed
little light on how this process unfolds.

There is evidence that adults who do not pursue an explicit

goal to categorize are also sensitive to the way features cluster
in categories. (Note that this is distinct from ”unsupervised”
circumstances in which learners pursue a goal to categorize
but without corrective feedback, (Bröker et al., 2022; Pothos
& Chater, 2005).) For example, in Billman and Knutson’s
(1996) studies, participants saw novel creatures that they were
asked just to observe and remember. In one condition, several
of the creatures’ features clustered together. Here, as with fur,
four legs and snout in dogs, each feature predicted the others
in the cluster (e.g., creatures with fluffy tails were also striped,
had clawed feet, and lived in the desert). In a contrasting con-
dition, individual pairs of features predicted each other, but
pairs varied independently without clustering together. Criti-
cally, participants were subsequently better at detecting viola-
tions of the predictive relationship between any two features
when features were part of a larger cluster versus an inde-
pendently varying pair. This finding reinforces the possibility
that even without a goal to categorize, learners can pick up
on feature clusters associated with category membership (for
similar sensitivity in the auditory domain, see Gabay, Dick,
Zevin, & Holt, 2015; Wade & Holt, 2005).

More recently, Unger and Sloutsky (2022) pioneered a
novel approach to exploring the contribution of incidental
exposure to category learning. Here, participants explicitly
learn categories after an initial round of incidental exposure to
either members of the same categories, or items composed of
random combinations of features. Multiple studies revealed
that incidental exposure to categories rendered people “ready
to learn” - that is, it fostered rapid subsequent category learn-
ing once people were clued in to the existence of the cate-
gories and prompted to learn them. Critically, this effect only
transpired for incidental exposure to categories whose fea-
tures formed distinct clusters. In contrast, there was no ready
to learn effect for incidental exposure to the more rule-like
categories that are typically learned in the lab from pursuing
an explicit goal to categorize.

Taken together, this evidence suggests that learners who
are not pursuing a goal to categorize are somehow sensitive
to the way features cluster in categories. Moreover, this sensi-
tivity somehow supports category learning. At the same time,
the underlying learning processes remain opaque.

Present Study
The goal of the present study was to bring our understanding
of category learning closer to how it may unfold in real-world
experience, which is full of incidental encounters. We studied
how people learned novel categories modeled on real-world
categories, in which clusters of multiple features were asso-
ciated with category membership. We studied the contribu-
tion of incidental exposure following the approach pioneered
by Unger and Sloutsky (2022). Participants first received a
round of incidental exposure in which they completed a sim-
ple cover task that made no mention of categories, then com-
pleted an explicit phase in which they were prompted to learn
the categories. Using this approach, we contrasted explicit
category learning following incidental exposure to members
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Figure 2: The left panel shows two example creatures, each with feature values characteristic of one of the two categories. The
right panel visualizes the distribution of the values of three features when all values were sampled from the same mode of the
bimodal distribution within a given creature.

of the categories participants were later prompted to learn,
versus items composed of random combinations of features.
To illuminate how incidental exposure shapes category learn-
ing, we built upon the behavioral paradigm to incorporate
both eye tracking and a newly developed modeling approach
that uses eye tracking data to illuminate the category rep-
resentations that learners form over time (Weichart, Galdo,
Sloutsky, & Turner, 2022; Turner, 2019; Galdo, Weichart,
Sloutsky, & Turner, 2022).

Methods
Participants
Participants were 49 undergraduate students who participated
in return for course credit.

Materials and Apparatus
We created creatures with features that we could use to divide
the creatures into two categories resembling real-world cate-
gories like cats and dogs. Like cats and dogs, our creature cat-
egories possessed multiple features are associated with cate-
gory membership (e.g., short snouts and narrow noses in cats
versus long snouts and wide noses in dogs), and some fea-
tures unassociated with category membership (e.g., long and
short fur occur in both dogs and cats).

Creatures were composed of a standard body and five fea-
tures: arm, ear, leg, tail, and wing (illustrated in the left panel
of Figure 2. We generated 100 values for each feature by first
creating two anchor versions of different shapes, then mor-
phing continuously between them using the Blender graphics
software (Blender Foundation, 2018). For all features, the
frequencies of these values followed a bimodal distribution
composed of two truncated normal distributions: one ranging
from 0 – 50 with a mean of 25, and one ranging from 51 –
100 with a mean of 75 (SD = 24). To generate categories,
we randomly selected 3 or 4 of the features to be relevant to
category membership. For relevant features, all members of
one category contained values sampled from one mode, and
all members of the other category contained values sampled
from the other mode (Figure 2, right panel). Thus, values of

relevant features clustered together. Values of irrelevant fea-
tures were sampled randomly from the bimodal distribution.
We used an Eyelink Portable Duo eye tracker to examine at-
tention to irrelevant versus relevant features.

Design and Procedure
The experiment consisted of two phases: an Incidental phase
in which participants saw creatures in the context of a cover
task, and an Explicit phase in which participants learned to
categorize creatures into two categories. Participants were
assigned to one of two conditions: (1) Category, in which
creatures in the Incidental phase were members of the two
categories they would later learn in the Explicit phase, or (2)
Baseline, in which creatures in the Incidental phase possessed
no category structure (all features were randomly sampled
from the bimodal distribution). For each participant, we ran-
domly selected three or four of the features to be relevant fea-
tures whose values clustered together in the categories they
learned in the Explicit phase (as in Figure 2B).

The Incidental and Explicit phases each contained 30 trials.
In the Incidental phase, participants saw creatures appear in
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Figure 3: In the Category condition, jump location was im-
plicitly associated with category membership. However, par-
ticipants showed no evidence of learning this association.
Pre-jump looking to the side of the screen where the creature
jumped was at chance in Category and Baseline participants.
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Figure 4: Left: Best-fitting values of attention to each feature were determined for each participant. Boxplots depict the
distribution of attention values for each participant’s most attended relevant and irrelevant feature in the Baseline and Category
conditions. Right: Points represent the mean value for each feature within k-means cluster A (x-axis) and cluster B (y-axis)
estimated for each participant based on the gaze-corrected values they observed. Colors represent whether each dimension was
relevant or irrelevant to category membership during the Explicit phase.

the center of the screen for 80 frames (∼1,333ms), then hop
to the right or left. Participants simply indicated the side to
which the creature jumped using the right and left buttons on
a game controller.

As in Unger and Sloutsky (2022), for participants in the
Category condition, category membership was implicitly as-
sociated with jump location. This raises a potential con-
cern that participants in the Category condition could spon-
taneously treat incidental exposure as an explicit category
learning task, in which they try to predict jump location based
on the creatures’ appearance and use the observed jump lo-
cation as feedback. Jump location would be readily learn-
able under such circumstances. However, also as in Unger
and Sloutsky (2022), participants showed no evidence of such
learning. Figure 3 shows that although jump location was pre-
dictable for participants in the Category condition, they did
not anticipatorily look towards the category-consistent side.

In the Explicit phase, participants were instructed that the
creatures belonged to two categories: Tobas and Zeemies.
They were prompted to categorize creatures one at a time by
saying “Toba” or “Zeemie”, and given corrective feedback
following each decision.

Results
The goal of analyses was to investigate whether and how sen-
sitivity to the way features cluster together in categories con-
tributes to subsequent explicit category learning. To accom-
plish this goal, we fit the data from the full experiment using
the the Adaptive Attention Representation Model (AARM),
which has been developed to capture categorization behavior
and gaze during category learning. In-depth discussion and
technical information about AARM can be found in Turner
(2019); Weichart et al. (2022); Galdo et al. (2022). Here,
we provide a high-level description of the application of the
model to the present experiment.

In AARM, each item encountered is stored as an exemplar
in memory. This memory trace consists of the set of feature

values that the item possessed. Critically, AARM estimates
how attention to features changes over the course of learning
based on both (1) gaze and (2) categorization decisions. First,
the likelihood of looking at each feature at a given point in
time is treated as a function of attention. Thus, when fitting
the model for a given participant, estimates of attention are
based on searching for values that improve the model’s pre-
diction of the participant’s pattern of looking. Second, when
participants pursue an explicit goal to learn categories with
corrective feedback, attention is assumed to change from trial
to trial as a function of learning. Specifically, attention is as-
sumed to increase for features whose values were useful for
predicting category membership, and decrease for those that
were not. Thus, when fitting the model for the Explicit phase
for a given participant, estimates of attention are also based
on searching for values that improve the model’s prediction
of participants’ trial to trial categorization decisions. We next
describe how we adapted this overall framework to investi-
gate whether and how learning during the Incidental phase
contributed to learning in the Explicit phase.

What is Learned from Incidental Exposure?
Previous applications of AARM exclusively focused on the
conventional approach in which learners make explicit cat-
egorization decisions and receive corrective feedback. We
therefore developed a novel approach to estimate what was
learned from the Incidental phase (reported here) and its con-
tribution to learning in the Explicit phase (reported below).

First, attention in the Incidental phase was freely estimated
based on gaze during this phase. Based on the evidence re-
viewed in the Introduction, we also assumed that participants
could learn the tendencies with which features clustered to-
gether in the items that they saw. Recall that each participant
saw a unique set of items by sampling feature values from the
bimodal distributions shown in Figure 2A. For participants in
the Category condition, the values of three or four features
consistently clustered together. Values of the remaining fea-
tures for participants in the Category condition and for all
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Features	Ranked	by	Gaze	Preference

Figure 5: The panels on the left show aggregate model-predicted fixations for participants in three groups: Baseline participants
(who could not form clusters from the Incidental phase), Category participants who correctly mapped clusters formed in the
Incidental phase to labels, and Category participants who incorrectly mapped clusters to labels. Panel B shows that learning
early in the Explicit phase was hindered by incorrect cluster mapping, and (non-significantly) aided by correct cluster mapping.

features for participants in the Baseline condition were ran-
domly sampled from the full bimodal distribution. To cap-
ture what participants could learn from observing these items,
we assumed that participants could store the items they ob-
served as a memory trace. Critically, this memory trace only
included feature values for features they actually looked at
(based on a threshold of looking ≤ 100ms); for unobserved
features, we shifted values towards the uninformative center
of the bimodal distribution. We then took these estimated
memory traces, and used k-means clustering to extract two
unlabeled clusters from the items that each participant ob-
served. Thus, our estimate of what participants learned dur-
ing the Incidental phase consisted of: (1) these clusters, and
(2) estimates of attention for each feature based on gaze data.

As shown in the left panel of Figure 4, best-fitting estimates
of attention revealed that even in the Incidental phase, before
the categories were even mentioned, participants in the Cat-
egory condition allocated greater attention to the category-
relevant features whose values clustered together. The right
panel shows that the clusters estimated for participants in
the Category condition from the feature values they observed
neatly captured the category clusters.

Contribution of Incidental Exposure to Category
Learning
Learning during the Incidental phase could contribute most
strongly to learning early in the Explicit phase, before partic-
ipants accumulated extensive explicit information. To capture
such learning, we quantified participants’ performance on the

first 15 trials of the Explicit phase. We did so using a Rasch
model to jointly estimate the difficulty of correct categoriza-
tion on these trials and participant-level abilities to categorize
correctly on these trials (Rasch, 1993). From this model, we
extracted a Learning Score for each participant that captured
their categorization “ability” during the first half of the Ex-
plicit phase.

Our above analysis suggests that participants in the Cat-
egory condition could have a leg up on category learning
early in the Explicit phase. Specifically, they could enter
this phase armed with both clusters that could be mapped to
category labels, and attention to features relevant to category
membership. However, this prior learning could also actively
harm learning in the Explicit phase if participants happened
to mismap the clusters to the wrong category labels. If this oc-
curred, a participant would be more likely to make incorrect
responses and get negative feedback early on in the Explicit
phase than a participant who was randomly guessing. Receiv-
ing consistently negative feedback early in the Explicit phase
could lead to one of two outcomes. First, participants might
be aware that they are accurately dividing creatures into cate-
gories but just mislabeling them, and therefore simply switch
the labels and rapidly improve in accuracy. Second, partic-
ipants may only know that they are doing something wrong,
and shift their attention to different features in search of a new
basis on which to make categorization decisions. In contrast,
participants in the Baseline condition could only learn from
scratch upon entering the Explicit phase.

We investigated these potential contributions of incidental

1179



Figure 6: Higher learning scores were associated with main-
taining the same pattern of attention from the Incidental to the
Explicit phase in the Category condition, but not the Baseline
condition.

exposure in two ways. In one approach, we used the model
fits to infer whether participants in the Category condition
correctly or incorrectly mapped clusters to categories, and
compared these two groups to participants in the Baseline
condition. For a given participant, we estimated two possi-
ble mappings of clusters estimated from the Incidental phase
to labels: (1) mapping cluster A to the ”Zeemie” label and
Cluster B to the ”Toba” label, and (2) the opposite mapping.
During model fitting, we estimated which of the two possi-
ble mappings best captured the participant’s pattern of cate-
gorization decisions during the Explicit phase. In addition,
for each of these possible label mappings, we calculated the
overall distance between each cluster and the members of the
category with the same label, then determined which possible
mapping had the smaller distance. We identified the partici-
pant’s mapping as correct if it was the one with the smaller
distance, and incorrect otherwise. As shown in Figure 5, we
did indeed observe two divergent patterns in Category con-
dition participants: Correct mappers learned the categories
with relatively high accuracy early in the Explicit phase and
maintained the pattern of attention they formed during the In-
cidental phase, and Incorrect mappers were actively inaccu-
rate early in the Explicit phase and dramatically shifted their
pattern of attention.

We corroborated this pattern with an analysis of the data
itself, outside the model. To perform this analysis, we used
the gaze data to divide participants in each condition into two
groups: Maintainers who maintained their pattern of look-
ing from the Incidental to the Explicit phase, and Shifters
who shifted their pattern of looking. The Maintainer ver-
sus Shifter designation was based on whether the feature the
participant looked most at during the Incidental phase was
the same as the one they looked most at during the Explicit
phase. Learning early in the Explicit phase was similar for
these two groups in the Baseline condition. Critically, in the
Category condition, Maintainers showed significantly better
learning early in the Explicit phase than Shifters. Thus, both
the data and model-based analyses provide evidence that in-

cidental exposure built a foundation for category learning.
In the present experiment, this foundation could either help
or hinder once learners began to explicitly map what they
learned incidentally to category labels.

General Discussion
Our minds become populated with categories that organize
our experience of the world around us, such as dog, cup and
chair. Here, we used a combined behavioral, eye tracking and
computational modeling approach to investigate how inciden-
tal encounters that are commonplace in everyday experience
may contribute to learning such categories in the first place.
We particularly sought to shed light on how such incidental
exposure may give learners the opportunity to pick up on the
way features tend to cluster together in categories. We found
that learners picked up on these features during incidental ex-
posure, before they even knew that the items they observed
belonged to categories. Once prompted to learn the categories
explicitly, we found evidence that learners had formed clus-
ters of items from incidental exposure. These clusters could
either help or disrupt category learning depending on whether
learners happened to map clusters onto the correct category
labels. In contrast, participants who did not receive inciden-
tal exposure to the categories simply learned the categories
from scratch once explicitly prompted to do so.

The present research is vital for bringing our understand-
ing of category learning closer to how it may unfold in the real
world. To date, much of what we know about category learn-
ing comes from learning under highly explicit conditions, in
which learners are informed that they will encounter items
from a specified number of categories, then proceed to cate-
gorize them one by one with the aid of corrective feedback.
In everyday experience, access to such explicit information is
likely outweighed by incidental encounters with the entities
we come to perceive as members of categories. The current
findings suggest that much of the heavy lifting of learning
may occur during incidental exposure, as learners pick up on
the way features tend to cluster together in categories. In con-
trast, explicit information simply gives learners the opportu-
nity to map learned clusters onto category labels. Therefore,
it is possible that instead of labels imposing category bound-
aries on sensory continua, many real world categories may be
learned pre-verbally and mapped onto labels.

Future Directions

The present study raises multiple ways to further illuminate
how incidental exposure contributes to category learning, two
of which we highlight here. First, the eye tracking approach
used here could be used to uncover the dynamics with which
learners pick up on the way features cluster together in cat-
egories. Specifically, the appearance of any one feature pre-
dicts the appearance of others with which it clusters. Thus,
gaze could be used to probe how learners detect these rela-
tionships. Second, knowledge about real-world categories of-
ten encompasses clusters of multiple features associated with
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membership, whereas explicit learning in the lab often fos-
ters impoverished representations that focus on one or a few
diagnostic features. Future research could thus investigate
whether incidental exposure gives learners the opportunity to
form richer representations that better resemble those learned
from real world experience.
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